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Outline

 classification: ROC plots, the ROC convex hull, iso-
accuracy lines

 ranking: ROC curves, the AUC metric, turning
rankers into classifiers

 probability estimation: probability estimates from
ROC curves, calibration

 model manipulation: new models without re-
training, ordering decision tree branches and rules,
locally adjusting rankings

 more than two classes: multi-objective optimisation
and the Pareto front, approximations
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from http://wise.cgu.edu/sdt/

Receiver Operating Characteristic

 Originated from signal detection theory
 binary signal corrupted by Gaussian noise
 how to set the threshold (operating point) to

distinguish between presence/absence of signal?
 depends on (1) strength of signal, (2) noise

variance, and (3) desired hit rate or false alarm rate
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Signal detection theory

 slope of ROC curve is equal to likelihood ratio

 if variances are equal, L(x) increases
monotonically with x and ROC curve is convex
 optimal threshold for x0 such that

 concavities occur with unequal variances

    

! 

L(x) =
P(x |signal)

P(x |noise)

    

! 

L(x0) =
P(noise)

P(signal)
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ROC analysis for classification

 Based on contingency table or confusion matrix

 Terminology:
 true positive = hit
 true negative = correct rejection
 false positive = false alarm (aka Type I error)
 false negative = miss (aka Type II error)

 positive/negative refers to prediction
 true/false refers to correctness

Predicted
positive

Predicted
negative

Positive
examples

True positives False negatives

Negative
examples

False positives True negatives
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More terminology & notation

 True positive rate tpr = TP/Pos = TP/TP+FN
 fraction of positives correctly predicted

 False positive rate fpr = FP/Neg = FP/FP+TN
 fraction of negatives incorrectly predicted
 = 1 – true negative rate TN/FP+TN

 Accuracy acc = pos*tpr + neg*(1–fpr)
 weighted average of true positive and true

negative rates

Predicted
positive

Predicted
negative

Positive
examples

TP FN Pos

Negative
examples

FP TN Neg

PPos PNeg N
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A closer look at ROC space
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Example ROC plot

ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/)
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The ROC convex hull

 Classifiers on the convex hull achieve the best accuracy
for some class distributions

 Classifiers below the convex hull are always sub-optimal
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Iso-accuracy lines
 Iso-accuracy line connects ROC points with the same

accuracy
 pos*tpr + neg*(1–fpr) = a



 Parallel ascending lines
with slope neg/pos
 higher lines are better
 on descending diagonal,

tpr = a

  

! 

tpr =
a " neg

pos
+

neg

pos
fpr
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Iso-accuracy & convex hull

 Each line segment on the convex hull is an
iso-accuracy line for a particular class
distribution
 under that distribution, the two classifiers on the

end-points achieve the same accuracy
 for distributions skewed towards negatives

(steeper slope), the left one is better
 for distributions skewed towards positives (flatter

slope), the right one is better

 Each classifier on convex hull is optimal for a
specific range of class distributions
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Selecting the optimal classifier

 For uniform class distribution, C4.5 is optimal
 and achieves about 82% accuracy
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Selecting the optimal classifier

 With four times as many +ves as –ves, SVM is optimal
 and achieves about 84% accuracy
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Selecting the optimal classifier

 With four times as many –ves as +ves, CN2 is optimal
 and achieves about 86% accuracy
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Selecting the optimal classifier

 With less than 9% positives, AlwaysNeg is optimal
 With less than 11% negatives, AlwaysPos is optimal



19 July, 2007 UAI’07 tutorial on ROC analysis — © Peter Flach 16/64

Incorporating costs and profits

 Iso-accuracy and iso-error lines are the same
 err = pos*(1–tpr) + neg*fpr
 slope of iso-error line is neg/pos

 Incorporating misclassification costs:
 cost = pos*(1–tpr)*C(–|+) + neg*fpr*C(+|–)
 slope of iso-cost line is neg*C(+|–)/pos*C(–|+)

 Incorporating correct classification profits:
 cost = pos*(1–tpr)*C(–|+) + neg*fpr*C(+|–) +

          pos*tpr*C(+|+) + neg*(1–fpr)*C(–|–)
 slope of iso-yield line is

          neg*[C(+|–)–C(–|–)]/pos*[C(–|+)–C(+|+)]
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Skew

 From a decision-making perspective, the
cost matrix has one degree of freedom
 need full cost matrix to determine absolute yield

 There is no reason to distinguish between
cost skew and class skew
 skew ratio expresses relative importance of

negatives vs. positives

 ROC analysis deals with skew-sensitivity
rather than cost-sensitivity
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Rankers and classifiers

 A scoring classifier outputs scores f(x,+)
and f(x,–) for each class
 e.g. posterior P(+|x) and P(–|x), or likelihoods

P(x|+) and P(x|–)
 scores don’t need to be normalised

 f(x) = f(x,+)/f(x,–) can be used to rank
instances from most to least likely positive
 e.g. posterior odds P(+|x)/P(–|x), or likelihood

ratio P(x|+)/P(x|–)

 Rankers can be turned into classifiers by
setting a threshold on f(x)
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Drawing ROC curves for rankers

 Naïve method:
 consider all possible thresholds

 in fact, only k+1 for k instances

 construct contingency table for each threshold
 plot in ROC space

 Practical method:
 rank test instances on decreasing score f(x)
 starting in (0,0), if the next instance in the

ranking is +ve move 1/Pos up, if it is –ve move
1/Neg to the right
 make diagonal move in case of ties



19 July, 2007 UAI’07 tutorial on ROC analysis — © Peter Flach 20/64

Some example ROC curves

 Good separation between classes, convex curve
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Some example ROC curves

 Reasonable separation, mostly convex
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Some example ROC curves

 Decent performance in first and last segments of ranking,
more or less random performance in middle segment
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Some example ROC curves

 Poor separation, large and small concavities
indicating locally worse-than-random behaviour
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Some example ROC curves

 Random performance
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ROC curves for rankers
 The curve visualises the quality of the ranker

or probabilistic model on a test set, without
committing to a classification threshold

 The slope of the curve indicates empirical (test
set) class distribution in local segment
 straight segment -> test set indicates no need to

distinguish between those examples
 slope can be used for calibration

 Concavities indicate locally worse than random
behaviour
 distinguishing between those examples is harmful
 convex hull gets rid of concavities by binning scores
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 The AUC metric
 The Area Under ROC Curve (AUC) assesses the

ranking in terms of separation of the classes
 all the +ves before the –ves: AUC=1
 random ordering: AUC=0.5
 all the –ves before the +ves: AUC=0

 Equivalent to the Mann-Whitney-Wilcoxon
sum of ranks statistic
 estimates probability that randomly chosen +ve is

ranked before randomly chosen –ve
                       where S– is the sum of ranks of –ves

 Gini coefficient = 2*AUC–1 (area above diag.)
 NB. not the same as Gini index!

    

! 

S" " Pos(Pos + 1)/2

Pos # Neg
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AUC=0.5 not always random

 Poor performance because data requires two
classification boundaries

0 1

0

1
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 Turning rankers into classifiers

 Requires decision rule, i.e. setting a
threshold on the scores f(x)
 e.g. Bayesian: predict positive if
 equivalently:

 If scores are calibrated we can use a default
threshold of 1 on the posterior odds
 with uncalibrated scores we need to learn the

threshold from the data
 NB. naïve Bayes is uncalibrated

 i.e. don’t use Pos/Neg as prior!

    

! 

P(+|x)

P("|x)
=

P(x|+) # Pos

P(x|") #Neg
> 1

    

! 

P(x |+)

P(x |")
>

Neg

Pos
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Uncalibrated threshold

True and false positive
rates achieved by
default threshold
(NB. worse than
majority class!)
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Calibrated threshold

Optimal
achievable
accuracy
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Classification vs. ranking

 Classifiers and rankers optimise a different
loss function
 classifier minimises classification errors (O(n))
 ranker minimises ranking errors (O(n2))

 number of misclassified (+ve,–ve) pairs

 The best achievable ROC point may not lie
on the best achievable ROC curve
 would probably learn a different weight vector

for linear model
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Probability estimation

 A probability estimator assigns a probability
to each point in instance space
 more restrictive than scores, which can be

shifted or scaled without affecting the ranking

 Scores are not necessarily good probability
estimates, even when normalised
 e.g., naive Bayes scores tend to be close to 0 or 1

 Turning a ranker into a probability estimator
requires calibration
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Probabilities from trees
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Naïve Bayes probabilities

LRA1=13/3, LR¬A1=5/7,
LRA2=12/2, LR¬A2=6/8,
LR1=156/6, LR2=60/14,
LR3=78/24, LR4=30/56
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Good probabilities ≠ good ranking

 .8+.7+ .6+ .4– .3– .2–
 AUC = 1
 MSE (aka Brier score) = .097

 1+.9+ .51– .49+ .1– 0–
 AUC = 8/9 (worse)
 MSE = .090 (better)
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Calibration

 Well-calibrated probabilities have the
following property:
 in a sample with predicted probability p, the

expected proportion of positives is close to p

 This means that the predicted likelihood ratio
approximates the slope of the ROC curve
 perfect calibration implies convex ROC curve

 This suggests a simple calibration procedure:
 discretise scores using convex hull and derive

probability in each bin from ROC slope
 = isotonic regression (Zadrozny & ELkan, 2001; Fawcett &

Niculescu-Mizil, 2007; Flach & Matsubara, 2007)
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Decomposing the Brier score

calibration loss:
mean squared deviation

from empirical probabilities 
derived from slope of 

ROC segments

refinement loss: 
defined purely in terms

of empirical probabilities
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Calibration and refinement
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Calibration and refinement
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From ranks to probabilities

 One way to obtain a well-calibrated
probability estimator:
 train a ranker from labelled training data
 draw ROC curve on test set
 obtain a calibration map from convex hull

 NB. This is exactly what decision trees do,
taking into account that:
 test set could be training set (risk of overfitting)
 decision tree training set ROC curves are

provably convex, so no need for convex hull
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ROC-based model manipulation

 ROC analysis allows creation of model
variants without re-training
 e.g., manipulating ranker thresholds or scores

 Example: re-labelling decision trees
 (Ferri et al., 2002)

 Example: locally adjusting rankings
 (Flach & Wu, 2003)
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Re-labelling decision trees

 A decision tree can be seen as an unlabelled tree
(a clustering tree):
 Given n leaves and 2 classes, there are 2n possible

labellings, each representing a classifier

 Use ROC analysis to select the best labellings
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DT labellings in ROC space

False  positive  rate

0.20 0.4 0.6 0.8 1
0
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False  positive  rate
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Selecting optimal labellings
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1. Rank leaves by
likelihood ratio
P(l|+)/P(l|–)

2. For each possible split
point, label leaves
before split + and
after split –
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Why does it work?
 Decision trees are rankers if we use class

distributions in the leaves
 Probability Estimation Trees (Provost &

Domingos, 2003)

 ROC curve can be constructed by sliding
threshold
 just as with naïve Bayes

 Equivalently, we can order instances, which
boils down to ordering leaves
 because all instances in a leaf are ranked

together

 NB. Curve may not be convex on test set
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Repairing concavities

 Concavities in ROC curves from rankers
indicate worse-than-random segments in the
ranking

 Idea 1: use binned ranking (aka discretised
scores) —> convex hull

 Idea 2: invert ranking in segment

 Need to avoid overfitting
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Repairing concavities

 Convex hull corresponds
to binning the scores into
variable-sized bins in
order to eliminate locally
worse-than-random
ranking (concavity)
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Repairing concavities

 Convex hull corresponds
to binning the scores into
variable-sized bins in
order to eliminate locally
worse-than-random
ranking (concavity)

 Can do better than this:
invert ranking in each
concavity
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above line?

use ranking
in 2nd segment

yes no

use ranking
in 1st segment

Example: XOR

0 1

0

1

tied  XXXinvert  XXXX
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More than two classes

 Two-class ROC analysis is a special case of
multi-objective optimisation
 don’t commit to trade-off between objectives

 Pareto front is the set of points for which no
other point improves all objectives
 points not on the Pareto front are dominated
 assumes monotonic trade-off between objectives

 Convex hull is subset of Pareto front
 assumes linear trade-off between objectives

 e.g. accuracy, but not precision
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How many dimensions?
 Depends on the cost model

 1-vs-rest: fixed misclassification cost C(¬c|c) for
each class c∈C —> |C| dimensions
 ROC space spanned by either tpr for each class or fpr

for each class

 1-vs-1: different misclassification costs C(ci|cj)
for each pair of classes ci≠ cj —> |C|(|C|–1)
dimensions
 ROC space spanned by fpr for each (ordered) pair of

classes

 Results about convex hull, optimal point
given linear cost function etc. generalise
 (Srinivasan, 1999)
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Multi-class AUC

 In the most general case, we want to
calculate Volume Under ROC Surface (VUS)
 See (Mossman, 1999) for VUS in the 1-vs-rest

three-class case

 Can be approximated by projecting down to
set of two-dimensional curves and averaging
 MAUC (Hand & Till, 2001): 1-vs-1, unweighted

average
 (Provost & Domingos, 2001): 1-vs-rest, AUC for

class c weighted by P(c)
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Multi-class calibration

1. From thresholds to weights:
 predict argmaxc wc f(x,c)
 NB. two-class thresholds are a special case:

 w+ f(x,+) > w– f(x,–) ⇔ f(x,+)/f(x,–) > w–/w+

2. Setting the weights (Lachiche & Flach, 2003)
 Assume an ordering on classes and set the weights

in a greedy fashion
 Set w1 = 1
 For classes c=2 to n

 look for the best weight wc according to the weights
fixed so far for classes c'<c, using the two-class
algorithm
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3

1 2

Example: 3 classes

(0,0,1)

(1,0,0)

(0,1,0)
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Coverage space (Fürnkranz & Flach, 2005)

 Coverage space is ROC space with absolute
rather than relative frequencies
 x-axis: covered –ves n (instead of fpr = n/Neg)
 y-axis: covered +ves p (instead of tpr = p/Pos)
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Coverage space vs. ROC space

 Coverage space can be used if class
distribution (reflected by shape) is fixed
 slope now corresponds to posterior odds rather

than likelihood ratio
 iso-accuracy lines always have slope 1
 very useful to analyse

behaviour of particular
learning algorithm
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Precision-recall curves

 Precision prec = TP/PPos = TP/TP+FP
 fraction of positive predictions correct

 Recall rec = tpr = TP/Pos = TP/TP+FN
 fraction of positives correctly predicted

 Note: neither depends on true negatives
 makes sense in information retrieval, where true

negatives tend to dominate —> low fpr easy

Predicted
positive

Predicted
negative

Positive
examples

TP FN Pos

Negative
examples

FP TN Neg

PPos PNeg N
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From (Fawcett, 2004)

PR curves vs. ROC curves

 Two ROC curves  Corresponding PR curves

→ Recall

→
 P

re
ci

si
on
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Taking costs into account

 Error rate is err = (1–tpr)*pos + fpr*(1–pos)

 Define probability cost function as

 Normalised expected cost is
          nec = (1–tpr)*pcf + fpr*(1–pcf)

    

! 

pcf =
pos "C(#|+)

pos "C(#|+)+ neg "C(+|#)
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Concluding remarks
 ROC analysis for model evaluation and

selection
 key idea: separate performance on classes
 think rankers, not classifiers!
 information in ROC curves not easily captured by

statistics

 ROC analysis for use within ML algorithms
 one classifier can be many classifiers!
 separate skew-insensitive parts of learning…

 probabilistic model, unlabelled tree

 …from skew-sensitive parts
 selecting thresholds or class weights, labelling and

pruning
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Outlook

 Several issues not covered in this tutorial
 optimising AUC rather than accuracy when

training
 e.g. RankBoost optimises AUC (Cortes & Mohri, 2003)

 Many open problems remain
 ROC analysis in rule learning

 overlapping rules

 relation between training skew and testing skew
 multi-class ROC analysis
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